Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis
نویسندگان
چکیده
OBJECTIVE Most animals experience fasting-feeding cycles throughout their lives. It is well known that the liver plays a central role in regulating glycogen metabolism. However, how hepatic glycogenesis is coordinated with the fasting-feeding cycle to control postprandial glucose homeostasis remains largely unknown. This study determines the molecular mechanism underlying the coupling of hepatic glycogenesis with the fasting-feeding cycle. RESEARCH DESIGN AND METHODS Through a series of molecular, cellular, and animal studies, we investigated how PPP1R3G, a glycogen-targeting regulatory subunit of protein phosphatase 1 (PP1), is implicated in regulating hepatic glycogenesis and glucose homeostasis in a manner tightly orchestrated with the fasting-feeding cycle. RESULTS PPP1R3G in the liver is upregulated during fasting and downregulated after feeding. PPP1R3G associates with glycogen pellet, interacts with the catalytic subunit of PP1, and regulates glycogen synthase (GS) activity. Fasting glucose level is reduced when PPP1R3G is overexpressed in the liver. Hepatic knockdown of PPP1R3G reduces postprandial elevation of GS activity, decreases postprandial accumulation of liver glycogen, and decelerates postprandial clearance of blood glucose. Other glycogen-targeting regulatory subunits of PP1, such as PPP1R3B, PPP1R3C, and PPP1R3D, are downregulated by fasting and increased by feeding in the liver. CONCLUSIONS We propose that the opposite expression pattern of PPP1R3G versus other PP1 regulatory subunits comprise an intricate regulatory machinery to control hepatic glycogenesis during the fasting-feeding cycle. Because of its unique expression pattern, PPP1R3G plays a major role to control postprandial glucose homeostasis during the fasting-feeding transition via its regulation on liver glycogenesis.
منابع مشابه
Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?
This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glu...
متن کاملRole of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production.
Two specific enzymes, glucokinase (GK) and glucose-6 phosphatase (Glc6Pase) enable the liver to play a crucial role in glucose homeostasis. The activity of Glc6Pase, which enables the liver to produce glucose, is increased during short-term fasting, in agreement with the enhancement of liver gluconeogenesis. During long-term fasting, Glc6Pase activity is increased in the kidney, which contribut...
متن کاملCREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis
Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme g...
متن کاملB-cell translocation gene 2 regulates hepatic glucose homeostasis via induction of orphan nuclear receptor Nur77 in diabetic mouse model.
B-cell translocation gene 2 (BTG2) is a member of an emerging gene family that is involved in cellular functions. In this study, we demonstrate that BTG2 regulates glucose homeostasis via upregulation of Nur77 in diabetic mice. Hepatic BTG2 gene expression was elevated by fasting and forskolin. Overexpression of Btg2 increased the expression of hepatic gluconeogenic genes and blood glucose outp...
متن کاملGlucokinase and molecular aspects of liver glycogen metabolism.
Conversion of glucose into glycogen is a major pathway that contributes to the removal of glucose from the portal vein by the liver in the postprandial state. It is regulated in part by the increase in blood-glucose concentration in the portal vein, which activates glucokinase, the first enzyme in the pathway, causing an increase in the concentration of glucose 6-P (glucose 6-phosphate), which ...
متن کامل